Center \#1 - Solve the equation

1. $\mathrm{x}-1=8$
2. $m+7=11$
3. $21=p-12$
4. $7 q=42$
5. $7 \mathrm{k} \div 3=21$
6. $\frac{5 a}{7}=25$

Center \#2 - Write the word sentence as an equation or inequality.

1. The product of a number m and 2 is 8 .
2. A number h is at least 12 .
3. 6 less than a number t is 7 .
4. A number m increased by 5 is 7 .
5. A number r divided by 2 is at most 4 .
6. A number y added to 7 is no less than 18 .
7.8 is the quotient of a number g and 3.
7. A number c is less than 5 .

Center \#3 - Tell whether the ordered pair or given value is a solution of the equation or inequality.

1. $y=3 x+1 ;(2,7)$
2. $y=7 x-4 ;(4,22)$
3. $7 \mathrm{~m}<36 ; \mathrm{m}=5$
4. A taxi is traveling at a rate of 30 miles per hour. Write and graph an equation in two variables that shows the relationship between time (t) and distance (d) of the taxi. How far does it go in t hours?

Equation: \qquad

Center \#4 - Solve the inequality and graph the solution.

1. $x+1>3$
2. $4 \leq n-4$
3. $s-15<32$
4. $12+m \geq 29$

Center \#5 - Solve the inequality and graph the solution.

1. $9 n \geq 63$
2. $21>\frac{2 x}{7}$
3. $24 \geq 3 b$
4. $k \div 3>15$

Center \#6

1. The Golden Gate bridge is about 2700 meters long. The Golden Gate bridge is four-fifths as long as the Coronado bridge. Write and solve an equation to find the length / of the Coronado bridge.
2. You want to use a square section of your yard for a garden. You have at most 52 feet of fencing for the garden. Write and solve an inequality to represent the possible lengths of the side of the garden.

Center \#1 - Solve the equation
1.

$$
\begin{aligned}
& x-1 /=8 \\
& +1+1
\end{aligned}
$$

2. $\begin{gathered}m+7 /=11 \\ -7-7\end{gathered}$
3. $21=p-12$

$$
\frac{12+11}{33=p}
$$

4. $\frac{7 q}{7}=\frac{42}{7}$

$$
q=6
$$

5.

$$
\begin{array}{r}
7 k \div 3 /=21 \\
\frac{7 k}{7}=\frac{63}{7}
\end{array}
$$

6. $\frac{7}{8} \cdot \frac{6 a}{\pi}=\frac{25}{1} \cdot \frac{7}{8}$

$$
a=35
$$

$$
k=9
$$

Center \#2 - Write the word sentence as an equation or inequality.

1. The product of a number m and 2 is 8 .
2. A number h is at least 12 .

$$
m \cdot 2=8
$$

$$
h \geqslant 12
$$

3. 6 less than a number t is 7 .

$$
t-6=7
$$

4. A number m increased by 5 is 7 .

$$
m+5=7
$$

5. A number r divided by 2 is at most 4 .
6. A number y added to 7 is no less than 18.

$$
\frac{r}{2} \leq 4
$$

$$
7+y \geqslant 18
$$

7.8 is the quotient of a number g and 3 .
8. A number c is less than 5 .

$$
8=g \div 3
$$

$$
c<5
$$

Center \#3 - Tell whether the ordered pair or given value is a solution of the equation or inequality.

1. $y=3 x+1 ;(2,7)$
2. $y=7 x-4 ;(4,22)$
3. $7 \mathrm{~m}<36 ; \mathrm{m}=5$

$$
\begin{aligned}
& 7=3(2)+1 \\
& 7=6+1 \\
& 7=7 \text { yes }
\end{aligned}
$$

$$
\begin{gathered}
22=7(4)-4 \\
22=28-4 \\
22=24 \\
50
\end{gathered}
$$

$$
7 \cdot 5<36
$$

$$
35<36
$$

yes
4. A taxi is traveling at a rate of 30 miles per hour. Write and graph an equation in two variables that shows the relationship between time (t) and distance (d) of the taxi. How far does it go in t hours?

Equation: \qquad $d=30 t$

Center \#4 - Solve the inequality and graph the solution.
1.

Center \#5 - Solve the inequality and graph the solution.

1. $\frac{9 n}{9} \geq \frac{63}{9}$

2. $\frac{24}{3} \geq \frac{\beta b}{3}$

3. $\frac{7}{2} \cdot 21>\frac{2 x}{7} \cdot \frac{7}{7}$

4.

Center \#6

1. The Golden Gate bridge is about 2700 meters long. The Golden Gate bridge is four-fifths as long as the Coronado bridge. Write and solve an equation to find the length / of the Coronado bridge.
$\frac{2700}{\frac{4}{5}}=\frac{\frac{4}{5} c}{\frac{4}{5}}$
$c=2700 \div \frac{4}{5}$
$\frac{675}{1} \frac{700}{1} \cdot \frac{5}{y_{1}}=3375 \mathrm{~m}$
2. You want to use a square section of your yard for a garden. You have at most 52 feet of fencing for the garden. Write and solve an inequality to represent the possible lengths of the side of the garden.

$$
\begin{gathered}
l+l+l+l \leq 52 \\
\frac{t l}{4} \leq \frac{52}{4} \\
l \leq 13 \mathrm{ft} .
\end{gathered}
$$

